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Optimal strictly localized basis sets for noble metal surfaces
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The properties of the (111) surfaces of Cu, Ag, and Au are evaluated using a first-principles approach with
strictly localized basis sets. These surfaces present metallic and extended properties that are a priori difficult to
describe with a local-basis approach. We explore methodologies to enhance the basis sets of the surface atoms
in order to accurately describe surface properties such as surface energies, surface states, and work functions.
In this way, the advantages of local-basis computations (namely, efficiency, optimum size scaling, and a natural
description of bonding in real space) can be retained, while keeping the accuracy in the description of the

properties of the surface at a very good level.
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I. INTRODUCTION

The surfaces of noble metals have been widely studied as
prototypical metallic surfaces. In recent years the number of
works that focus on these surfaces has increased greatly due
to the ability to manipulate and characterize the surfaces and
adsorbed species provided by the scanning probe mi-
croscopies, and most notably the scanning tunneling micro-
scope (STM). Noble metal surfaces are ideal for techniques
like STM due to their metallic character and reduced chemi-
cal reactivity. Also, the existence of surface states in some of
these surfaces, such as the (111), which are decoupled from
the bulk states and form a quasi-two-dimensional nearly free
electron gas, provides a wide variety of effects. For instance,
these states can interact with point defects and step edges on
the surface, producing standing-wave patterns that can be
directly measured with STM."? These standing waves can
also be confined within quantum corrals®*> and quantum
drums.®

The interaction of adsorbates with these surfaces is also a
topic of great current interest. One limiting case is the ad-
sorption of individual atoms. For magnetic species, the inter-
play between the localized magnetic moment of the adsor-
bate and the delocalized conduction electrons, both at the
bulk and surface bands, leads to exciting effects such as
Kondo resonances at low temperatures. The observation of
these resonances by means of the STM is a very active
area,”'! with cross-links with the previously mentioned
works on surface standing waves, such as the formation of
“quantum mirages” in quantum corrals with a magnetic im-
purity inside.>!? The opposite limit is the adsorption of large
organic molecules.'3!7 In this case, the interest in using
noble metal surfaces is that, due to the filled d shell, the
density of states at the Fermi level is reduced, compared to
the surfaces of transition metals. This makes the noble metal
surfaces less reactive toward organic molecules, which gen-
erally leads to nondissociative adsorption, often in the phys-
isorption regime. The metallic character of the surface allows
the use of STM and related techniques such as scanning tun-
neling spectroscopy (STS) to study the electronic properties
of single molecules weakly coupled with the surface, due to
the relatively weak surface-adsorbate interaction. Interest-
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ingly, the adsorption on these surfaces of organic molecules
containing magnetic atoms also leads to Kondo
phenomena.'®!? Also, the manipulation of single molecules,
the excitation of vibrational modes, and the induction of
chemical reactions by means of the STM current are active
topics of research,”2! in which noble metal surfaces are
most commonly used as substrates.

Many of these experiments can benefit greatly from the
basic understanding provided by first-principles calculations.
One clear example is the interpretation of STM images and
STS spectra, which is often very difficult without the refer-
ence provided by simulated images from electronic structure
calculations. Density-functional theory (DFT) (Ref. 22) pro-
vides a practical way to compute ground-state properties of
systems with significant complexity and number of atoms, as
those described here. However, the computational cost of
DFT methods is still quite significant and can become pro-
hibitive for systems with a few hundreds of atoms, especially
for structural optimizations or molecular dynamics runs for
long simulation times. In this context, methods based on
strictly localized atomic orbitals have been proposed as an
optimal choice for speeding up and reducing the computa-
tional cost of DFT calculations.>*>” These basis functions
have the form of atomic orbitals, but are forced to be zero
beyond a given confinement radius. The computational sav-
ings, compared to standard plane-wave (PW) calculations or
other localized bases such as Gaussians, come from several
facts. Compared to PWs, the main advantages of strictly lo-
calized orbitals are as follows: (i) the number of basis func-
tions is drastically reduced (although the computational ef-
fort per basis function to compute the Hamiltonian is lower
in PW calculations); (ii) the calculation of the Hamiltonian
can easily be made to scale linearly with the number of elec-
trons in the system,?*?%2° compared to the superlinear scal-
ing in PW calculations,*® and (iii) the vacuum is described
essentially cost-free with strictly localized orbitals, while it is
as costly as the space occupied by the atoms in PW calcula-
tions (a clear disadvantage for calculations involving sur-
faces). Compared to other types of localized atomiclike or-
bitals (such as Gaussians), strictly localized atomic orbitals
have the advantage of the straightforward sparsity of the
Hamiltonian matrix, without having to impose tolerance cut-
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offs, which in solids easily leads to ill-conditioning and nu-
merical instabilities.

When using strictly localized atomic orbitals for the de-
scription of solid surfaces, an important issue is whether the
basis set is good enough to describe the surface region, and
in particular, the decay of the wave functions into the
vacuum. This is very important in describing correctly physi-
cal properties such as the work function, the energies of sur-
face states, and the interaction of the surface with adsorbed
species (especially if weak interactions are involved).3!3? In
the simulation of STM images, it is essential to have a cor-
rect description of the decay of the wave functions at points
relatively far from the surface and of its dependence with the
energy of the state.

In this paper we analyze the accuracy of strictly localized
atomic orbital bases to describe the physical properties of the
(I11) surface of the noble metals Cu, Ag, and Au. We will
show that the standard bases commonly used for bulk sys-
tems are not sufficiently complete to describe accurately the
surface energy, work function, energies of surface states, and
the decay of the wave functions into the vacuum. This is
partly due to their relatively short localization radii, which
are optimal for the description of the bulk system. Increasing
the orbital cutoffs at the surface greatly improves the de-
scription of the surface properties. However, we will show
that better results can be obtained improving the flexibility
and range of the orbitals by augmenting the standard bases
with either diffuse orbitals centered on the surface atoms or
with floating orbitals centered above the surface atomic
layer. The paper is organized as follows. In Sec. II we give a
description of the calculation method and the structural mod-
els used in our studies. Section III describes the form of the
strictly localized basis sets used, their optimization and aug-
mentation to describe surface properties. In Sec. IV we
present and discuss the results obtained for several physical
properties such as surface energies, work functions, position
of the surface states and wave function decay into the
vacuum, as a function of the basis set used. Finally, in Sec. V
we summarize the results of our study and give our conclud-
ing remarks.

II. METHODOLOGY

The purpose of this study is to assess the suitability of
strictly localized atomic orbital bases to study the surface
properties of noble metals. Our strategy is to compare the
results obtained with these bases with reference calculations
in which all the underlying approximations are the same, but
which use essentially converged basis sets. Since we will use
pseudopotentials to remove the core electrons, we choose our
reference to be the results of well converged PW calcula-
tions, which can be made as accurate as needed by just in-
creasing the energy cutoff of the PW expansion of the wave
functions.

Our local orbital calculations are done using the SIESTA
code,?®? whereas the PW results are obtained with the AB-
INIT code.’® In both cases, we use the same exchange-
correlation functional: the PBE (Ref. 34) form of the gener-
alized gradient approximation (GGA). We also use the same
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pseudopotentials for both calculations. These are nonlocal
norm conserving scalar relativistic pseudopotentials of the
Troullier-Martins form.> For the three noble metals (Cu, Ag,
and Au), the pseudopotentials were generated using the s'd'’
electronic configuration of the atom. The radii (in bohr) for
the s, p, d, and f components of the pseudopotential were
2.05, 2.30, 1.75 and 2.05 for Cu, 2.30, 2.30, 1.80 and 2.30
for Ag, and 2.35, 2.35, 2.35 and 2.35 for Au. The pseudopo-
tentials were expressed in the full nonlocal Kleinman-
Bylander form,*® and the same local and nonlocal compo-
nents were used in the SIESTA and ABINIT calculations.’’
Therefore, the two calculations only differ in the type of
basis set used.?

III. STRICTLY LOCALIZED BASIS SETS

In this section we describe the strictly localized basis sets.
We will first describe the standard basis sets that are com-
monly used, how they are obtained and optimized. Then, we
will propose schemes to augment them to describe accurately
the surface properties.

We use basis sets made of strictly localized numerical
atomic orbitals. This implies orbitals that are a product of a
numerical radial function with a finite confinement radius?
and a spherical harmonic. The standard machinery of quan-
tum chemistry®® (multiple-£, polarization, floating, con-
tracted and diffuse orbitals) can be used to define the number
of radial functions for each angular momentum component
(and their shape) and the maximum angular momentum of
the basis.** The main difference between the orbitals used
here and the standard bases in quantum chemistry (such as
Gaussians or Slater orbitals) is that our radial functions are
numerical orbitals (and therefore have no predefined func-
tional shape), and are strictly zero beyond a given radius (see
Fig. 1 and text below).

A. Basis sets optimized for the bulk

For bulk calculations, basis sets obtained using the
multiple- plus polarization scheme?® usually provide excel-
lent performance. Typically, a double-{ basis with a single
polarization shell (denoted as DZP basis) is sufficient to pro-
duce results very close to convergence.?® “Double-/ stands
for the use of two radial functions (with different radial
shape) for each angular momentum component correspond-
ing to the occupied shells of the free atom. In the case of the
noble metals, this amounts to using two radial functions for
the valence s shell and two radial functions for the valence d
shell. The polarization orbitals serve to describe the distor-
tion of the valence orbitals due to bond formation, and using
a single radial function is usually enough. In the case of the
noble metals, the polarization orbitals would consist in a
single shell of p orbitals (which serves to polarize the s
shell), and eventually a shell of f orbitals (to polarize the d
shell). However, the effect of the f polarization orbitals is
very small, so they are usually not included in the basis.
Therefore, for the noble metals, the DZP basis consists of 15
orbitals: two shells of s functions (two orbitals), two shells of
d functions (ten orbitals), and one shell of polarization p
functions (three orbitals).
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Choosing the shape of the numerical radial functions for
each orbital can be done in several ways. Here, the first-¢
orbital for each angular momentum shell is obtained from the
solution of the free atom (with the same pseudopotential),
while the second { is obtained from the first one using the
“split valence” scheme proposed by Artacho et al.*° for nu-
merical atomic orbitals.*! The strict localization of the orbit-
als is achieved by adding a smooth confining potential that
diverges at r,. (the chosen cutoff radius of the orbital) when
we solve the free atom.?®

In general, choosing the localization radii r,. for each of
the orbitals in the basis set is a delicate issue. Larger radii
usually provide better quality bases (i.e., lower energies), but
at the cost of increasing the computational effort. Different
orbitals and chemical species have different decay properties,
and therefore different confinement radii should be used. Be-
sides, the optimal shape (and therefore the confinement ra-
dius) of a given orbital may change depending on the chemi-
cal environment. Anglada et al.** developed a method to
obtain optimal values of r. for all the orbitals in a given
reference system, in such a way that the choice of confine-
ment versus basis quality can be tailored at will for that
specific reference system. In particular, the confinement radii

(as well as other possible parameters which define the basis
sets, such as the smoothness of the confining potential, the
matching radii of the second-{ orbitals, net atomic charges,
etc.) are chosen to minimize a fictitious enthalpy, defined as
H=E+ PV, where E is the total energy of the reference sys-
tem, V=(4m/ 3)2,}3# is the sum of volumes of the basis
orbitals ¢, and P is a fictitious pressure parameter. By vary-
ing P, we can tailor the quality/confinement of the basis: by
choosing a small pressure, the main contribution to the en-
thalpy is the energy, and therefore the radii tend to become
larger to produce lower energies; for large values of the pres-
sure, the volume of the orbitals has a high weight in the
enthalpy, and minimization of the latter leads to orbitals with
smaller radii, at the expense of increasing the energy of the
system.

In this work, we have optimized the basis sets for the bulk
using the method sketched above. We have used three differ-
ent pressure values (0.5, 0.1, and 0.02 GPa) to obtain bases
with different confinement radii. The parameters obtained for
each pressure for Cu, Ag, and Au are shown in Table I. We
see that the expected trends (larger radii for smaller optimi-
zation pressure) are obtained. In Table IT we present the bulk
properties obtained with these bases for the three noble met-

TABLE I. Parameters defining the basis sets for Cu, Ag, and Au optimized in the bulk, for three different values of the fictitious pressure
(0.5, 0.1, and 0.02 GPa). r, is the cutoff radius of each of the orbitals. V;, and r; are parameters which determine the confining potential for
each shell (see Ref. 26). Q is a net charge assigned to the atom in the computation of the first-¢ orbital by solving the free atom problem (see

Ref. 26).
e VO T
(bohr) (Ry) (bohr)
Basis S1¢ Saz D dl§ dzg N P d N P d Q(e)
Cu 0.5 GPa 4.38 1.55 4.86 4.75 2.62 49.9 4.0 78.9 332 2.13 4.53 0.074
0.1 GPa 4.95 1.71 5.38 5.22 3.17 23.6 6.6 14.9 2.26 1.63 3.96 0.074
0.02 GPa 5.77 2.19 5.49 5.21 2.92 19.0 5.1 52 1.94 0.26 2.80 0.074
Ag 0.5 GPa 4.71 1.40 5.29 5.06 2.76 13.4 43 74.6 3.55 3.55 4.92 0.080
0.1 GPa 5.33 2.67 5.52 5.62 3.21 6.7 34 19.4 2.11 1.98 4.09 0.080
0.02 GPa 5.37 3.33 5.98 5.97 4.01 4.4 53 6.4 2.09 1.86 3.36 0.079
Au 0.5 GPa 4.99 1.32 5.00 5.15 1.93 160.4 108.1 236.8 4.76 4.84 5.02 0.025
0.1 GPa 5.53 3.69 6.09 5.87 2.30 104.8 66.7 125.3 3.84 4.72 4.47 0.025
0.02 GPa 6.52 4.18 6.90 6.18 2.35 99.0 543 543 3.76 3.96 4.11 0.025
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TABLE II. Bulk properties of Cu, Ag, and Au for the basis sets optimized in the bulk with three different
values of the fictitious pressure (0.5, 0.1 and 0.02 GPa). The results from PW calculations and from experi-
ments (taken from Ref. 45) are also shown. ag: equilibrium lattice constant. B: bulk modulus. AE: total

energy per atom, relative to the PW result.

Basis
0.5 GPa 0.1 GPa 0.02 GPa PW Exp

Cu ag(A) 3.63 3.65 3.67 3.67 3.61
B(GPa) 178 164 128 134 137
AE(eV) 0.19 0.06 0.04 0.0

Ag ag(A) 4.12 4.16 4.17 4.17 4.09
B(GPa) 112 101 97 86 101
AE(eV) 0.21 0.05 0.03 0.0

Au ap(A) 4.14 4.17 4.18 4.16 4.08
B(GPa) 199 161 158 140 173
AE(eV) 0.39 0.20 0.16 0.0

als and compare them with the results from PW calculations.
In all cases, the lattice constant is very well described, with
differences between the local orbitals and the PW results
which are much smaller than the difference with the experi-
mental values. The total energies per atom obtained with the
localized orbitals are very close to those of PWs, but slightly
higher, since the calculations are variational and the PW re-
sults shown are essentially converged. The quality of the
local orbital bases improves with increasing their cutoff radii
(i.e., decreasing the fictitious pressure). For the smallest op-
timization pressure (0.02 GPa), corresponding to the longest
radii considered here, the total energies are nearly equal to
the PW results,® reflecting the fact that DZP bases are ex-
cellent to describe bulk structures.?® Further reducing the fic-
titious pressure below 0.02 GPa does not modify the results
significantly (e.g., changes in the energy are less than 0.01
eV).

It is interesting to analyze the shape and confinement radii
obtained for the basis sets optimized in the bulk. In Fig. 1 we
show the first-{ orbitals of the s and d shells of the three
elements as an illustration. The shapes of the orbitals opti-
mized with different pressures are very similar (especially
for the d shell), although the tails are longer for smaller
optimization pressures, as expected. However, basis sets ob-
tained by optimization in the bulk using even lower values of
the fictitious pressure do not have significantly bigger orbit-
als than those obtained for 0.02 GPa. The reason is that the
total energy of the bulk system is not significantly reduced
by further increasing the radii of the orbitals, because the
presence of the basis of neighboring atoms makes the long
tails in the atomic orbitals unnecessary. This is in contrast to
the situation for the free atom, where an optimization of the
basis with decreasing values of the pressure produces orbitals
with increasing radii, until the true exponentially decaying
(Slater-type) pseudoatomic orbitals (PAO’s) are obtained.
These PAO’s are also shown in Fig. 1, where it is clear that
the orbitals optimized in the bulk adapt to the environment
by modifying their shape and range and, in general, becom-
ing more localized than in the free atom. This is especially
pronounced for the s shell, for which the compression and

suppression of the long atomic tail is very strong. For the d
shell, the overall shape of the bulk orbitals is essentially the
same as that of the PAO, although the tail is also suppressed.
Despite the more compact nature of the d orbitals compared
to the s states, the optimum radii for both shells are quite
similar for the three elements, for all the pressures consid-
ered. This has been already observed in bulk transition met-
als like Fe.** Also, the optimal radius for the d shell is, in
general, less dependent on the fictitious pressure than that for
the s shell. Both observations are related to the known fact
that outer shells of atoms are more compressible than inner
shells.*

In summary, basis orbitals optimized in the bulk, even
with very small fictitious pressures, do not have the long tails
that will be needed to describe surface properties, as we will
see below. Besides, the use of the orbitals optimized in the
free atom to describe the surface properties is not an optimal
solution either, since the decay rate of the wave functions in
the atom and in the surface will be different. Therefore,
schemes to improve the basis at the surface will be neces-
sary. In the following we explore some possible schemes to
achieve this.

B. Basis sets for surfaces

To describe accurately the properties of the surfaces, we
need to include orbitals with weight in the vacuum region,
which can describe the long decay of the wave functions.
This can be done in several ways. Here we explore a number
of possibilities, which are schematically shown in Fig. 2.

The first scheme we have explored is simply to increase
the radius of the orbitals of the atoms at the surface layer,
which allows the wave functions to spread further into the
vacuum [see Fig. 2(a)]. For simplicity, we only show here
the results of enlarging the radius of the first-{ orbital of the
s shell, since we have observed that increasing the radii of
the rest of the orbitals only has a minor effect on the surface
properties. The confinement radii were taken as a variational
parameter to optimize the quality of the basis and are chosen
to minimize the surface energy of the (111) surface. We will
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FIG. 2. Schematic view of different schemes for basis sets for
the surface. The atomic positions follow the fcc stacking sequence.
The lines indicate the position of the surface layer. In all panels,
small open circles represent the basis optimized in the bulk. In (a)
the atoms at the surface layer have a DZP basis, but the cutoff radii
are enlarged compared to the bulk (shown as large open circles). In
(b) the surface atoms are described by a bulk DZP basis, plus an
augmentation s orbital centered at the surface atoms, indicated by
large gray circles. In (c) and (d) one and two layers of floating
orbitals (shown by the small gray circles) are located above the
surface, respectively.

refer to these DZP bases with expanded s orbitals as “Opt.
DZP” bases. For Cu, Ag, and Au we obtain values for the s
orbital cutoff of 12, 10, and 16 bohr, respectively. These are
significantly larger than the values obtained for the bulk,
which clearly shows the need to expand the basis to describe
properly the vacuum region. It should be noted, however,
that increasing the orbital localization cutoff of the DZP ba-
sis leads to basis functions with the natural decay of the
atomic orbitals in the free atom. On the other hand, in a
crystal surface each wave function will fall into the vacuum
with a different decay rate, which depends on the energy of
the state. Therefore, we should expect that these Opt. DZP
bases, while performing better than the bulk DZP basis to
describe surface properties, will not be flexible enough, and
that including more orbitals with different decay rates or
with weight on more distant regions from the surface will be
necessary. We next explore some possible schemes to
achieve this.

The second scheme is to include in the basis set centered
on the atoms a shell of diffuse functions, with longer cutoff
and slower decay than the bulk DZP orbitals [see Fig. 2(b)].
We only include a set of atom-centered orbitals with s sym-
metry, and only for the atoms at the surface. For the radial
shape, we used the first excited state of s symmetry for the
free atom, confined within a given cutoff radius. These orbit-
als have one node, in order to be orthogonal to the valence s
orbital. In Fig. 3 we show the example of the diffuse orbital
for Ag, which has a large weight at large distances, where the
valence 5s orbital is null. Again, we choose the confinement
radii that minimize the surface energy of the (111) surface,
and find that the optimal radius for the diffuse orbitals is
around 7 bohr for Cu and 9 bohr for Ag and Au. Reducing
the radii from these optimal values rapidly increases the sur-
face energy, since the wave functions are again too much
confined. Using longer radii increases the energy slightly, by
up to 30—40 meV above the value for the optimal radius, and
brings a considerable increase in the computational effort.
The results reported in the next section are obtained using
the optimized values for the cutoff radii of the diffuse orbit-
als.
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FIG. 3. Radial part of the first-{ orbital of the 5s shell (full line)
and the diffuse 6s orbital of the surface atoms (dashed line) for
silver.

The last scheme we consider is to add a set of floating
orbitals located above the surface.*®*” These are off-site or-
bitals centered at points where there are no atoms. We only
include floating orbitals of s symmetry, with the same radial
shape and cutoff radius as the valence s orbital of the basis
set of the atoms at the surface. We have considered two
options for the location of the floating orbitals: (i) using one
layer of orbitals, centered at the positions which the next
layer of atoms would have above the surface in the crystal
[see Fig. 2(c)], and (ii) using two layers of orbitals, centered
at the next two atomic layers above the surface [see Fig.
2(d)]. Obviously, the second option produces a richer, more
flexible basis set.

IV. RESULTS AND DISCUSSION

In this section we present the results obtained for the
properties of the (111) surface of the three noble metals, for
the different basis sets described in the previous section. All
the surface calculations are done using a slab geometry with
18 atomic layers and a vacuum of 14 A thickness. We found
that these slabs are thick enough so that the splitting of the
surface state (due to the interaction between the states at both
surfaces of the slab) is of the order of a few tens of meV. We
will compare the electronic properties obtained with different
basis sets for the same geometries. Since the surface relax-
ations are very small in these systems, we have used the
geometry of the unrelaxed surfaces (i.e., with the atoms at
the bulk positions). We have done this for two different val-
ues of the lattice constant: the experimental and the one that
minimizes the bulk energy in the DFT calculation. Since the
conclusions obtained are the same, here we will only present
the results obtained at the experimental lattice constant.

A. Energies

Figure 4 shows the values for the surface energies (in eV
per surface atom) for each of the basis sets considered, cal-
culated by subtracting bulk and slab total energies: E
=1/2(Egu,—NEy,), where N is the number of atoms in the
slab, and Ey ) is the bulk energy per atom. The factor of 2
accounts for the two surfaces in the slab. We see that the
DZP basis set optimized for the bulk produces values which
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FIG. 4. Surface energies (eV per surface atom) obtained with
different basis sets. Experimental values taken from Ref. 48.

are far too high compared to PW results. Increasing the radii
of the s orbitals of the surface atoms (Opt. DZP basis) al-
ready reduces the differences by a factor of 2 or more. In-
clusion of a shell of diffuse orbitals in the surface atoms
produces slightly better energies, while including floating or-
bitals gives results very close to those of PW calculations.
Including one or two layers of floating orbitals produces
nearly identical results. For Ag and Au, the floating orbitals
bases give results within 0.03 eV of the PW ones. For Cu, the
differences are larger (about 0.07 eV) and we have found that
further reducing this difference requires an increase in the
radius of the polarization p orbitals of the surface atoms.
We compute the work function by plotting the electro-
static potential profile along the direction perpendicular to
the surface and taking its value in the vacuum region with
respect to the Fermi level. The results are shown in Fig. 5.
Again, the DZP basis optimized in the bulk produces large
deviations with respect to the PW results: the values are sig-
nificantly smaller, up to a factor of 2 for Cu. For the im-
proved bases we find the same trends as for the surface en-
ergy: (i) increasing of the radius of the s orbitals reduces the
errors to about a half, (ii) the results improve for the diffuse
orbitals, and (iii) floating orbitals produce the best results, in
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FIG. 5. Work function obtained with different basis sets. Experi-
mental values taken from Ref. 49.
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FIG. 6. Energy of the surface state at the I" point, with respect to
the Fermi energy, obtained with different basis sets. Experimental
values taken from Ref. 50.

agreement with the PW values within 0.1 eV. We should note
that the calculation of the work function is a very delicate
task, especially in the case of PWs, since small deviations
from self-consistency and small errors in the charge density
at the vacuum region easily lead to deviations of several
tenths of an electron volt in the computed values. As for the
case of the surface energies, we see that addition of more
than one layer of floating orbitals does not produce signifi-
cant changes in the values of the work function.

The unreconstructed (111) surfaces of noble metals ex-
hibit the presence of Shockley surface states™® at the pro-
jected bulk sp-band gap at the center of the surface Brillouin
zone (SBZ). These states have a parabolic dispersion with
the minimum at the I point of the SBZ. Figure 6 shows the
position of the minimum of the surface band for each basis
set. Once again, the bulk-optimized DZP bases are not suffi-
cient to describe properly these states: they yield surface
state energies which are significantly higher than those of the
PW results. This is due to the fact that the bulk basis sets
decay too fast to describe properly the surface state decay,
which extends into the vacuum considerably. Therefore, the
surface state wave functions are too confined, which is re-
flected in an increased energy. However, in contrast with the
calculation of the surface energy and the work function, in-
creasing the radius of the s orbitals of the surface atoms does
not produce a significant improvement on the computed sur-
face states energies. As we discussed in Sec. III B, the orbit-
als computed in the atom have the natural decay of the
atomic wave function, which is different from that of the
bulk and surface wave functions (see below), and this has a
clear impact on the computed surface energies. Including
orbitals with higher weight in the vacuum region improves
the situation dramatically. Both the diffuse and floating bases
produce surface state energies within 50 meV of the PW
results. Once again, including more than one layer of floating
orbitals does not provide an appreciable improvement.

B. Wave functions

We now turn to the study of the decay of the wave func-
tions into the vacuum. This is obviously a very important
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FIG. 7. Decay into the vacuum of the wave function of the
surface state at the I' point for Ag, plotted along a line in the z
direction (perpendicular to the surface) which passes through a sur-
face atom. The last atomic layer is located at z=0. (a) and (b) show
the wave function in linear and logarithmic scale, respectively.

issue in the quantitative description of STM images. The
exponential decay into the vacuum can be well described
when PWs are used as basis sets, but it is questionable
whether finite range atomic orbitals can also describe it prop-
erly, at least in a qualitative manner. It should be noted,
however, that even PW techniques find difficulties in de-
scribing accurately the wave functions at relatively long dis-
tances from the surfaces, since they contribute negligibly to
the total energy, which is the variational target of the wave
function optimization. Here, we explore the quality of our
finite-range atomic orbitals to describe the decay of the wave
functions at distances from the surface halfway the typical
STM tip-sample distances of 5-10 A. We will focus on
wave functions which are located near the Fermi level
(which are the ones relevant for the STM process), and in
particular on those corresponding to the surface state at the I"
point. We will only describe the results for silver, since those
for copper and gold are very similar.

The decay into the vacuum for the wave function of the
surface state of silver, along a line perpendicular to the sur-
face passing through a surface atom and through a hollow
site, is shown in Figs. 7 and 8, respectively. The abscissa
indicates the depth into the vacuum, with the origin located
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FIG. 8. Same as in Fig. 7, plotted along a line passing through a
surface hollow site.
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at the position of the last atomic layer of the slab. The basis
sets optimized for the bulk are certainly not sufficiently ex-
tended to reproduce the decay of wave functions at energies
near the Fermi level. This is shown here for the surface state,
but it is also true for the other bulk states at similar energies.
Increasing the radius of the s orbitals of the surface atoms
produces some improvement, mainly extending the wave
function further into the vacuum, but the obtained decay rate
at long distances from the surface is quite different from that
obtained with plane waves. This is again due to the different
natural decay of the atomic wave functions compared with
those of the surface. However, the augmented bases are able
to reproduce quite closely the results from PWs, up to dis-
tances close to 9 bohr. Both diffuse orbitals and a single shell
of floating orbitals produce comparable results, with wave
functions which reproduce quite well the PW results, but
decay abruptly to zero at around 9 bohr from the surface.
Including a double shell of floating orbitals improves dra-
matically the description above 10 bohr. Clearly, an accurate
calculation of the wave function at even larger distances
could be done by further increasing the number of shells of
floating orbitals above the surface.

With any of the localized orbital bases, the discreteness of
the basis set is apparent in the wave function plots: while the
PWs are able to follow very well the expected exponential
behavior (linear shape in logarithmic scale), the wave func-
tions expanded in local orbitals show bumps which depart
from the exponential decay, and which are due to the expan-
sion in a finite (and small) number of orbitals with fixed,
nonexponential shape. However, the overall form of the
wave functions follows quite remarkably the expected decay.
Except at the distance where the localized orbitals drop to
zero (because of their confinement), the wave functions fol-
low a nearly exponential behavior, with a slope in close
agreement with that of the PW results for all the augmented
bases considered here.

V. SUMMARY AND CONCLUSIONS

In summary, we have analyzed the quality of strictly lo-
calized atomic orbital basis sets to describe the properties of
the (111) surface of noble metals. We found that basis sets
optimized for the bulk are not able to provide sufficient ac-
curacy for many purposes. In particular, these bases produce
surface energies that are too high, as it is also the case with
the energies of the surface state, while the work functions are
underestimated. The decay of the wave functions close to the
Fermi level is too fast, not being able to reproduce the expo-
nential decay at distances longer than 2-3 bohr.

Increasing the range of the s orbitals of the surface atoms
yields important improvements in the computed surface en-
ergies and work functions. However, these enlarged bases are
still not sufficiently accurate to describe the energy of the
surface states and the form of their decay into the vacuum
due to their intrinsic decay rate following the shape of the
orbitals in the free atom.

Augmentation of the local orbitals basis sets with either a
shell of diffuse orbitals in the surface atomic layer, or with
one or two shells of floating orbitals in the vacuum region, is
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shown to produce a dramatic improvement both in the ener-
gies and in the wave function decay shape. The best results
are obtained with a double shell of floating orbitals, for
which the wave functions follow closely the PWs results up
to distances larger than 10 bohr from the surface. For the
energetics, floating orbitals provide slightly better results
than diffuse orbitals, although the differences are small. In
any case, the errors in energies (surface energy, work func-
tion, and surface state energy) for any of the augmented
bases tested here are always below 0.1 eV (and often much
smaller).

Let us now comment on the computational cost of the
different bases presented here. The main part of the CPU
time is split between the calculation of the Hamiltonian ma-
trix (mostly in the real-space numerical integrals)?® and the
solution of the eigenvalue problem. In our slab calculations
with 18 atomic layers, the latter is nearly equally costly for
all the schemes presented here, since the total number of
orbitals is almost the same: for each surface, there is only
one extra function in the case of diffuse orbitals and one
shell of floating orbitals, and two extra functions for the case
of two shells of floating orbitals. These are negligible num-
bers, compared with the total number of orbitals in an 18-
layer slab (270 for the DZP basis). However, the calculation
of the Hamiltonian matrix is significantly more expensive for
orbitals with large confinement radii, because both the num-
ber of integrals to be computed and the number of points in
real space needed to compute them increase dramatically
with the orbital radii. As a consequence, the Opt. DZP basis
has the largest computational cost of all those considered
here, since it contains very long orbitals, with an overhead of
the order of 100% compared to the bulk optimized basis. The
diffuse orbitals basis has a smaller overhead, of roughly 20%
over the bulk optimized basis. Finally, the bases with floating

PHYSICAL REVIEW B 79, 075441 (2009)

orbitals have a negligible overhead of a few percent over the
bulk optimized bases, since they have orbitals with small
confinement radius.

The favorable cost and the accuracy provided by the float-
ing orbitals basis make them the preferred choice for calcu-
lations of the properties of free surfaces. On the other hand,
in the study of molecules adsorbed on surfaces, and espe-
cially for weakly interacting species, the use of floating or-
bitals can be problematic, since they could overlap with the
molecular basis. Also, in simulations involving dynamics and
relaxations, moving the centers of the floating orbitals can
lead to instabilities. In these cases, the preferred basis would
be the one including diffuse functions, since it provides very
good accuracy and only a minor overhead in computational
effort. The DZP bases optimized in the surface are not found
to be optimal neither for accuracy nor for computational ef-
ficiency.

In conclusion, we have shown that augmentation of the
standard strictly localized orbital basis sets leads to a very
good description of the properties of the surfaces of noble
metals. This work provides a practical way’! to study prob-
lems involving these surfaces at a significantly reduced cost
compared to PW calculations, while retaining a very accept-
able level of accuracy. Work is underway in using these
bases to study several problems regarding adsorption of large
organic molecules and the simulation of STM images on
these surfaces.
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